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Abstract Six is the number of fibre orientations necessary

and sufficient to remove all zero-valued shear moduli from

fibre arrays that have cubic symmetry. Of particular interest

is a weave, of just four families of flexible fibres, that has

equal numbers of equal fibre lengths parallel to the six face

diagonals of a cube. The relative positions of fibre lengths in

this weave can be visualised as the edges of space-filling

equilateral truncated octahedra.

Introduction

Laminates have a propensity to delaminate; the mathe-

matical plane between adjacent plies offers a preferred path

for crack propagation, irrespective of the nature of the

stress field that gives rise to the elastic strain energy

released. This is because the plane between plies is char-

acterised by a specific fracture surface energy significantly

lower than that for any other internal surface.

Consider airframe components. The overall stress field

experienced by the fuselage is two-dimensional; engine

thrust works against drag, and lift works against payload.

In a plate subjected to in-plane principal stresses r1 and r2,

respectively making angles / and p/2 – / with the plane of

the starter crack, Griffith [1] predicts the following con-

ditions for fracture.

Taking tensile stress as +ve and r2 > r1

(i) If 3r2 + r1 > 0, fracture occurs when r2 > K where K

is the strength in uniaxial tension

/ = 0, the fracture surface is perpendicular to r2

(ii) If 3r2 + r1 < 0, fracture occurs when (r2 – r1)2

+ 8K (r2 + r1)2 = 0

cos 2/ = –1/2(r2 –r1) /(r2 + r1) and crack growth from

the surface of the most dangerously oriented pre-existing

flaw occurs near, but not at, the end of the major axis of

that flaw and is on a plane inclined to the directions of

principal stress. So, for example, if it has any shear acting

on it, the starter crack changes direction and, in a layered

material, is free to seek out the plane of weakness

Following Orowan [2], Griffith’s two conditions for

fracture in two-dimensional stress fields are represented

graphically in Fig. 1. If r1 and r2 are plotted as rectangular

co-ordinates, Eq. (ii) is that of a parabola which is concave

towards the bisector of negative r1 and r2

Equation (i) is that to a vertical tangent to this

parabola. When all values of r1 and r2 are considered,

those for which r1 > r2 give rise to fracture when r1 > K

if 3r1 + r2 > 0. This is the equation to a horizontal tan-

gent to the parabola. The resulting fracture locus is shown

by the cross-hatched line in Fig. 1. Fracture occurs when

the point representing the state of stress crosses the locus

towards the cross-hatched side. Taking as example, the

quadrant where both principal stresses are compressive,

fracture is expected when the two stresses become

strongly unequal. For aircraft with engines mounted on

wings below the fuselage, the overall stress field is bi-

dimensional compression fore, and shear aft, of the wings;

the principal stresses become strongly unequal during

‘‘heavy’’ landing.

The development of three-dimensional (3D) weaves

offers a more reliable way of extending the application of

fibre reinforcement to fracture critical structures than does
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the development of laminates, and is the subject of the

present investigation.

Simple cubic symmetry arrays of rigid fibres

There exists an infinite number of cubic symmetry

arrangements of identical cylinders. The simplest is that

with cylinder axes parallel to the (three) edges of a cube,

for which the packing fraction (fibre volume fraction rea-

lised when crossing fibres touch) is g = 3p/16 ” 59%.

This array is of limited interest as a basis for the manu-

facture of engineering materials because it is not braced

against all orientations of applied shear; a two-dimensional

scissors-like deformation about one axis of the mother cube

does not tension fibres in any of the three fibre directions.

Figure 2 shows the ‘‘primitive unit cell’’, the mother

cube, for the array with fibres parallel to the (four) body

diagonals of a cube. It is sub-divided into eight octant

cubes, within each of which is shown the orientation of one

body diagonal. Octant cubes, on opposite sides of the

mother cube centre of symmetry, contain parallel fibres.

The fibre packing fraction is g = (p�3)/8 ” 68% This ar-

ray is also not braced against all orientations of applied

shear; shear about cube axes does not tension fibres in any

of the four fibre directions.

Of more technological interest, since it removes all zero-

valued shear moduli, are arrays that have six fibre orien-

tations, specifically the array with fibres parallel to the (six)

edges of a regular tetrahedron or, and this is the same array,

parallel to the (six) face diagonals of a cube. To visualise

best packing for this array, it is instructive to recall Lord

Kelvin’s theorem that there are three, and only three, reg-

ular polyhedra that fill space. In Fig. 2 we used the filling

of space by cubes; the other two are rhombic dodecahedra

and equilateral truncated octahedra. Figure 3 shows a

rhombic dodecahedron with edges parallel to the body

diagonals of a cube; it is evident that opposite pairs of faces

of the dodecahedron are perpendicular to face diagonals of

the cube. In Figs. 4 and 5, the ‘‘face diagonal directions’’

array is visualised as fibre lengths threading opposite faces

of space-filling rhombic dodecahedra. Figure 4 shows how

identically oriented rhombic dodecahedra, threaded by the

Fig. 1 Failure envelope for the propagation of a Griffith crack in

two-dimensional stress fields. After Orowan [2]

Fig. 2 Three-dimensional cubic symmetry array of identical cylin-

ders parallel to the body diagonals of a cube

Fig. 3 Rhombic dodecahedron with faces perpendicular to the face

diagonal directions of a cube
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six fibre orientations respectively perpendicular to the six

pairs of opposite dodecahedron faces, are assembled to

create the array shown in Fig. 5. Neighbouring fibres cross

at two kinds of points; fibres which cross at right angles

touch at points on common diameters parallel to cube

edges, and fibres which cross at 60� do so, without

touching, on diameters parallel to cube body diagonals.

The packing fraction is g = (p�2)/8 ” 56%.

Super-high fibre volume fractions

By altering the external morphology of fibres, the packing

fractions of cubic symmetry arrays can be increased

beyond those for identical circular cross-section cylinders.

For example, by substituting hexagonal cross-section fibres

for fibres of circular cross-section, the packing fraction of

the ‘‘cube face diagonals’’ array can be increased from

g = (p�2)/8 to almost g = 5/8. However, as can be seen in

Fig. 6a, crossing fibres do not touch face-on-face; instead,

fibre edges make line contact with fibre faces and, in a real

composite, would create classical ‘‘razor edge/flat surface’’

linear stress concentrations, Fig. 6b.

Fig. 4 Showing how

identically oriented rhombic

dodecahedra, each containing a

fibre parallel to a (different) face

diagonal direction of a cube, can

be brought together so as to

completely fill space

Fig. 5 Space-filling rhombic dodecahedra showing the relative

orientations of the six fibre directions parallel to the face diagonals

of a cube

Fig. 6 (a) Best-packed cubic symmetry array of hexagonal prisms

oriented parallel to the six face diagonals of a cube. (b) Schematic of

the ‘‘razor edge/flat surface’’ contacts between neighbouring prisms

in Fig. 6a. rrr = –(2p/p)(cosh/r), where p is the load per unit

thickness. rhh = rrh = 0
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Assembly of a ‘‘cube face diagonals’’ preform

A miniature high speed (6500 rpm) drilling machine has

been used to drill rhombohedral arrays of fibre socket

holes, with diameter 140 lm, in 1 mm thick brass plates. A

partially assembled ‘‘cube face diagonals’’ preform, with

four families of fibres located in socket holes in plates

clamped to precision-machined orientation blocks, is

shown in Fig. 7; note the rhombic dodecahedral form of the

enclosed space.

A cubic symmetry weave with no zero-valued shear

moduli [3]

Figure 8 shows an equilateral truncated octahedron ori-

ented with all of its edges lying parallel to face diagonals of

the cube within which it is drawn. The filling of space by

identical equilateral truncated octahedra, Fig. 9, shows

how, with just four families of flexible fibres, a 3D weave

in which the individual lengths of fibre lie parallel to the

six face diagonals of a cube, might be constructed. The

overall directions threaded by the four families of fibres are

parallel to the four body diagonals of the mother cube.

However, along its length, each fibre is segmented by

successive 120� bends in such a way that individual seg-

ments lie parallel to three different ‘‘face diagonal’’

directions, thereby making up a three-fold helix of fibre;

fibres from different families cross over at their 120� bends,

and it is these fibre cross-overs that hold the weave

together.

Cubic symmetry hybrids

When combined, the arrays with fibres parallel to the

(three) edges and (four) body diagonals of a cube form an

array that has no zero-valued shear moduli. The best

packed (highest fibre volume fraction) spatial positioning

of the seven sets of fibres in the combined array can be

visualised by reference to Fig. 2. Between the mid-points

of parallel edges of the octant cubes, there is room for

fibres oriented parallel to the cube edges. There are six of

these cube ‘‘edge’’ fibre locations per octant cube, each of

which is shared with a neighbouring octant cube.

Neighbouring cube ‘‘edge’’ and ‘‘body diagonal’’ fibres

touch along common diameters parallel to face diagonals

of the mother cube, and do so at a fibre radius of a/(4�2),

thereby making the overall packing fraction g = p(3 + �3)/

32 ” 46%. Hybrids in which one sub-array is assembled

from high modulus fibres and the other from high tough-

ness fibres (toughness—the possession of some natural

mechanism or mechanisms for rendering cracks non-

disastrous, such as slip and twinning in the case of crys-

talline materials—usually does not go hand-in-hand with

high modulus) is a basis for development of ceramic

composite materials that are both stiff and tough.

Cube ‘‘edge’’ plus cube ‘‘body diagonal’’ hybrids,

assembled from sub-arrays of fibres that have very dif-

ferent axial tensile modulus, raises the possibility of

designing composites with overall elastic isotropy. In

crystallography, crystals with cubic symmetry have, in

general, three independent elastic constants. In the special

case of isotropic crystals, the number of independent

elastic constants is reduced to two. The same general and

special cases exist for the elasticity of composites based on

3D fibre preforms that have cubic symmetry. The packing

fractions for the two sub-arrays of fibres in the hybrid

described above are ge = 3p/32 for that parallel to the

edges, and gd = (p�3)/32 for that parallel to the body

diagonals of the mother cube, making the ratio of sub-array
Fig. 7 Jig used to assemble ‘‘face diagonal directions’’ arrays of

140 lm diameter silicon carbide fibres

Fig. 8 An equilateral truncated octahedron with all of its edges

parallel to face diagonals of a cube

J Mater Sci (2006) 41:6520–6525 6523

123



packing fractions ge/gd = �3. For combined sub-arrays

assembled from a single fibre species to behave isotropi-

cally, this ratio needs to be ge/gd = 2/3 [4], i.e. most of the

‘‘cube edge’’ locations would have to be empty. However,

by assembling a hybrid with elastically stronger fibres

making up the ‘‘body diagonals’’ sub-lattice, it may be

possible to achieve elastic isotropy using fibre species that

have the same area of cross-section.

Preforms, comprising ‘‘Saphikon’’ single crystal sap-

phire whiskers (hexagonal cross-section with nominal

hexagon edge length 50 lm) in the four ‘‘body diagonal’’

directions and ‘‘BP Chemicals’’ 140 lm diameter silicon

carbide whiskers in the three cube ‘‘edge’’ directions, have

been assembled by first constructing the silicon carbide

sub-array from rafts of identically spaced parallel fibres.

To make the rafts, ten 50 mm lengths of silicon carbide

fibre, each with two 10 mm lengths of 35 gauge hyper-

dermic needle threaded onto it, one onto each of its ends,

and separated from its two neighbours by two pairs of

empty 10 mm lengths of the same tubing, have been

sandwiched, top and bottom, between 18 mm square

200 lm thick glass cover slips. A photograph of one of

these rafts is reproduced in Fig. 10. By laying down twenty

such rafts, with alternate rafts at right angles to each other

and with a cover slip spacing apart the cover slips bonded

to the ends of neighbouring parallel rafts, one hundred

fibres by one hundred fibres 3D arrays of two of the three

cube ‘‘edge’’ oriented fibres have been assembled as

Fig. 9 Space-filling identically

oriented equilateral truncated

octahedra delineated by four

sets of continuous fibres whose

lengths lie along the face

diagonal directions of a cube

Fig. 10 Raft of ten 140 lm diameter silicon carbide whiskers

Fig. 11 (a) Twenty high stack of alternately perpendicular rafts of

ten 140 lm diameter silicon carbide whiskers. (b) Single crystal

sapphire whiskers inserted into the channels parallel to all four body

diagonals of the stack shown in Fig. 11a
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shown in Fig. 11a. One hundred fibres oriented parallel to

the third cube ‘‘edge’’ direction were then threaded into

the channels left by the existing two sets. Using an equi-

lateral truncated octahedron model to determine the loca-

tions relative to individual cube ‘‘edge’’ fibres, ‘‘body

diagonal’’ sapphire fibres were inserted into the latter.

A seven fibre orientations hybrid preform so assembled is

shown in Fig. 11b.
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